ГАЛЬПЕРИНА АЛИНА РАВИЛЬЕВНА

РАЗРАБОТКА ПРИЕМОВ БИОРЕМЕДИАЦИИ ЗАМАЗУЧЕННЫХ СТОЧНЫХ ВОД

03.02.08 Экология (биологические науки) 03.01.06 Биотехнология (в том числе бионанотехнологии)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Диссертационная работа выполнена на кафедре «Прикладная биология и микробиология» ФГБОУ ВПО «Астраханский государственный технический университет»

Научный руководитель: доктор биологических наук, профессор

Сопрунова Ольга Борисовна

Официальные оппоненты: доктор биологических наук, профессор

Логинов Олег Николаевич

доктор биологических наук, профессор

Янкевич Марина Ивановна

Ведущая организация: ФГБОУ ВПО «Калмыцкий

государственный университет»

(г. Элиста)

Защита состоится «27» января 2012 г. в 14-00 часов на заседании диссертационного совета ДМ 002.136.01 при Институте биологии Уфимского научного центра РАН по адресу: 450054, г. Уфа, Проспект Октября, 69, тел/факс: 8(347) 253-62-47, e-mail: ib@anrb.ru

С диссертацией можно ознакомиться в библиотеке Института биологии Уфимского научного центра РАН, с авторефератом — в сети Интернет по адресу http://ib.anrb.ru/sovet.html и на сайте ВАК Минобрнауки РФ

Автореферат разослан «___» ____2012 г.

Ученый секретарь диссертационного совета, кандидат биологических наук, доцент P.B.

Уразгильдин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Одними из приоритетных загрязнителей природных и сточных вод являются нефтепродукты — неидентифицированная группа углеводородов нефти, мазута, бензина, керосина, масел и их различных примесей, которые по данным ЮНЕСКО относятся к числу наиболее опасных загрязнителей окружающей природной среды вследствие своей высокой токсичности и широкой распространенности (Оспанова, Халтурин, 2010)

Развитие экономики Астраханской области в последние десятилетия связано с интенсификацией деятельности предприятий нефтедобывающей и нефтеперерабатывающей промышленности, для которых характерно образование значительного количества нефтесодержащих отходов — сточных вод, нефтешламов. В настоящее время на территории Астраханской области имеется более 10 резервуаров-накопителей, содержащих около 350 тыс.т. высокотоксичных нефте- и мазутосодержащих сточных вод. В то же время, на территории области не достаточно предприятий, занимающихся очисткой и утилизацией высокотоксичных сточных вод и рекультивацией накопителей сточных вод.

В связи с этим, необходима разработка действенных мер по разрешению сложившейся ситуации в области экологически безопасного обезвреживания промышленных стоков и отходов предприятий хранения и распределения нефтепродуктов.

Продукты переработки нефти, такие как мазут, битум, асфальт, минеральные масла, получаемые из тяжелых нефтяных фракций, и являющиеся биологически «жесткими» нефтепродуктами (Поконова, 1992; Турковская, 2001), представляют собой особую проблему, как для природной среды, так и для биологического разрушения. Несмотря на то, что исследованиям данного вопроса в последнее время посвящено достаточно много работ (Поконова, 1992; Грищенков, 1997; Крапов, 1998; Сидоров, 1998; Турковская, 2001; Янкевич, 2002; Сопрунова, 2005; Ait-Longomazino, 1991; Roffey, 1991; Phol, 2002) остаются мало изученными вопросы, связанные с разработкой методов детоксикации и очистки сточных вод, содержащих остаточные фракции мазута.

Целью диссертационной работы являлась разработка приемов биоремедиации замазученных сточных вод, образующихся при обезвоживании товарного мазута.

В соответствии с целью были поставлены следующие задачи:

- 1. Изучить гидрохимические показатели замазученных сточных вод резервуара-накопителя.
- 2. Выявить гетеротрофные (органотрофные) и фототрофные микроорганизмы сточных вод.
- 3. Изучить роль циано-бактериальных сообществ (аборигенных, коллекционных) в процессах очистки сточных вод.

4. Смоделировать комплексную многоступенчатую очистку замазученных сточных вод.

Научная новизна. Впервые проведены комплексные (гидрохимические, гидробиологические и микробиологические) исследования резервуаранакопителя замазученных сточных вод, образующихся при обезвоживании Установлено, сточной воде что резервуара-накопителя, представляющего собой экстремальную водную экосистему, содержанием характеризующуюся высоким органического вещества, нефтяных углеводородов и токсичностью, присутствуют представители различных физиологических групп микроорганизмов (протео-, углевод- и липолитические, автохтонные), осуществляющие процессы трансформации загрязняющих веществ сточных вод.

Из замазученных сточных вод резервуара-накопителя получена накопительная культура циано-бактериального сообщества, эдификаторами которой являются цианобактерии: нитчатые Oscillatoria Woronichinii и одноклеточные Synechocystis salina.

Для моделирования процессов очистки замазученных сточных вод использованы циано-бактериальные сообщества: коллекционное на основе Oscillatoria amphibia и аборигенное на основе Oscillatoria Woronichinii и Sinechocystis salina.

Практическая значимость. Полученные результаты гидрохимических и микробиологических исследований замазученных сточных вод вошли в научно-технический отчет «Разработка концепции санации и рекультивации резевуара-накопителя замазученных сточных вод» (договор № 215-2007).

Полученные на основе проведенных комплексных исследований (гидрохимических, гидробиологических, микробиологических, токсикологических) замазученных сточных вод резервуара-накопителя результаты могут служить основой для последующих экологических исследований подобного рода сооружений.

Проведенные экспериментальные исследования по моделированию процессов очистки замазученных сточных вод с использованием альгобактериальных цианобактерий биоценозов на основе Oscillatoria Woronichinii, Sinechocystis salina и Oscillatoria amphibia и высших водных растений валлиснерия спиральная (Vallisneria spiralis), элодея канадская (Elodea canadensis), ряска малая (Lemna minor) являются основой для разработки технологии биоремедиации рекультивации И накопителей нефтезагрязненных и замазученных сточных вод предприятий переработки и транспортировки Астраханской области. Выделенное цианобактериальное сообщество на основе Oscillatoria Woronichinii, Sinechocystis кафедры «Прикладная помещено коллекцию биология микробиология» Астраханского государственного университета и используется в научно-исследовательских и учебных целях.

Личное участие автора. Автор провела аналитический обзор литературы, принимала непосредственное участие в исследовании резервуара-

накопителя и постановке лабораторных экспериментов, обработке полученных экспериментальных данных, анализе и обобщении результатов исследований.

Обоснованность выводов и достоверность результатов работы обеспечены большим объемом лабораторных экспериментов с применением современных и общепринятых методов. Результаты обработаны статистически.

Апробация работы. Результаты исследований были представлены на Всероссийских и Международных конференциях: «Фундаментальные и прикладные аспекты исследования симбиотических систем» (Саратов, 2007), «Биотехнологические процессы в народном хозяйстве» (Астрахань, 2007), наука XXI века», (Пущино, 2007, 2009), «Биологиямикроорганизмов и биотехнология» (Москва, 2008), «Биогеохимия народном хозяйстве: фундаментальные основы ноосферных технологий» (Астрахань, 2008), «Фундаментальные аспекты биологии в решении экологических проблем» актуальных (Астрахань, 2008), «Экология, природные ресурсы и развитие Московского региона» (Москва, 2009), «Современные проблемы физиологии, биотехнологии экологии И микроорганизмов» (Москва, 2009), «Инновационные технологии образовании, управлении, промышленности «АСТИНТЕХ-(Астрахань, 2010), «Новейшие технологии освоения месторождений углеводородного сырья и обеспечение безопасности экосистем Каспийского шельфа» (Астрахань, 2010); программе Федерального агентства по делам молодежи «Зворыкинский проект» (Астрахань, 2010), интернет-турнире «Модернизация» Общероссийской общественной организации «Деловая Интернет-компании UpSelf (Астрахань, 2010), Каспийского инновационного инновационных проектов 3-го форума (Астрахань, 2011) и отмечены дипломом 1-й степени выставки «Образование - инвестиции в успех 2011» (Астрахань, 2011).

Публикации. По теме диссертации опубликовано 21 работа, в том числе 4 статьи в изданиях, рекомендованных ВАК.

Структура и объем диссертации. Диссертация изложена на 165 страницах. Состоит из введения, 4-х глав (обзор литературы, объекты и методы исследований, характеристика объекта исследований, экспериментальные исследования), заключения, выводов, списка литературы, включающего 180 источников, в том числе 36 зарубежных. Работа иллюстрирована 47 рисунками и 28 таблицами.

Глава 1. Особенности процессов самоочищения природных и очистки сточных вод от нефтяных углеводородов (обзор литературы)

В обзоре литературы проанализированы пути попадания нефтяных углеводородов в водную среду и их влияние на водные экосистемы. Рассмотрено участие всех групп гидробионтов, вовлеченных в процессы самоочищения водных объектов от нефти и нефтепродуктов. Наиболее подробно изложены вопросы, касающиеся интенсификации процессов самоочищения и биологической очистки сточных вод от нефтяных и мазутных загрязнений. Особое внимание уделено применению цианобактериальных сообществ и высших водных растений.

Глава 2. Объекты и методы исследований

Объектами исследований являлись: 1) замазученные сточные воды резервуара-накопителя нефтебазы, расположенной в Приволжском районе г. Астрахани; 2) аборигенная микрофлора замазученных сточных вод; 3) цианобактериальные сообщества (ЦБС), выделенные из исследуемых замазученных сточных вод и ЦБС из коллекции кафедры «Прикладная биология и микробиология» АГТУ; 4) модельные лабораторные экосистемы (микрокосмы), созданные на основе замазученных сточных вод.

Исследования гидрохимических, гидробиологических, микробиологических и токсикологических показателей сточных вод резервуара-накопителя и модельные эксперименты осуществлялись в 2007-2010 г.г.

Отбор проб замазученных сточных вод и гидрохимические исследования осуществляли в соответствии с требованиями общепринятых методик (Лурье, Рыбникова, 1974; Унифицированные методы анализа вод СССР, 1978; ГОСТ Р 51592-2000).

Циано-бактериальные сообщества из замазученных сточных вод выделяли методом накопительных культур (Методы физиолого-биохимического исследования водорослей в гидробиологической практике, 1975) с использованием среды BG-11 (Нетрусов, 2005). Видовую идентификацию цианобактерий проводили с использованием определителя (Голлербах, 1953).

Выделение аборигенных микроорганизмов из замазученных сточных вод, микроорганизмов-спутников цианобактерий, эпифитной микрофлоры высших водных растений осуществляли методом Коха на твердые питательные среды (Теппер, 2004): сапротрофов - мясо-пептонный агар (МПА); сахарозолитиков - агар Чапека; автохтонной микрофлоры - агар на основе сточной воды; глюкозолитиков - глюкозо-аммонийную среду (Нетрусов, 2005). Выделение органотрофных бактерий осуществляли на *среде 1* следующего состава (г/л) (Митыпова, 2007): KH_2PO_4 –0,2; $MgCl_2\cdot 6H_2O$ –0,1; NH_4Cl –0,5; KCl–0,2; дрожжевой экстракт–0,05, раствор микроэлементов по Витману – 1мл/л, агар - 20. В качестве субстратов вносили (%): для протеолитиков – пептон (1,5); амилолитиков – крахмал

(1,5); целлюлолитиков — полоску фильтровальной бумаги (1,0); липолитиков — твин-40 (1,5); бродильщиков — глюкозу (1,5); сульфатредуцирующих бактерий (Γ/π) - $Na_2SO_4\cdot 10H_2O-3,0$; $Na_2S\cdot 9H_2O-0,05$; лактат, ацетат в концентрации 3 Γ/π .

Моделирование процессов очистки проводили с использованием замазученных сточных вод в 2-х вариантах: 1) двухступенчатая (фильтрация и внесение ЦБС, иммобилизованных на инертном носителе); 2) комплексная (фильтрация; принудительное аэрирование; внесение ЦБС, иммобилизованных на инертном носителе; внесение высших водных растений).

Концентрацию суммарных нефтяных углеводородов (СНУ) определяли флуорометрическим методом с использованием анализатора жидкости «Флюорат – 2» (ПНД Ф 14.1:2:4.128-98).

Концентрацию полиароматических углеводородов (ПАУ) определяли с использованием газового хроматографа GC-17A SHIMADZU (Другов, Родин, 2000).

Определение токсичности замазученных сточных вод и воды модельных экосистем проводили по следующим методикам: 1) определение токсичности воды и водных вытяжек из почв, осадков сточных вод, отходов по смертности и изменению плодовитости дафний (Жмур, 2001); 2) методика биотестирования по проращиванию семян (СанПиН 2.1.7.573-96). Установление класса опасности сточных вод осуществляли на основе острого краткосрочного опыта с использованием 2-х тест-объектов различных систематических групп (Приказ МПР РФ № 511 от 15 июня 2001): Daphnia magna Straus, Scenedesmus quadricauda (Turp.) Breb.

Статистическую обработку данных микробиологических, химических и токсикологических исследований проводили с помощью программы *STATISTICA* 6,0; программы Microsoft Excel Office XP.

Глава 3. Экологическая характеристика объекта исследований

Исследуемые замазученные сточные воды образуются в процессе обезвоживания эмульсий мазута И включают отходы смесей нефтепродуктов, в том числе загрязненную нефтепродуктами, воду, подсланевые и подтоварные воды. Накапливаются замазученные сточные воды в резервуаре-накопителе, который представляет собой искусственную емкость округлой формы (диаметром около 35 м), выложенную из кирпича в 50-х гг. 20 в. максимальной глубиной 4-6 м, расположенном на территории нефтебазы в Приволжском районе г. Астрахани.

При определении гидрохимических показателей установлено, что для замазученных сточных вод поверхностного горизонта $(0,5\,\mathrm{M})$ резервуаранакопителя отмечается превышение ПДК для воды поверхностных водоемов: хлорид-ионы $(674\,\mathrm{Mr/дm^3})$ в 1,9 раза; сульфат-ионы $(920\,\mathrm{Mr/дm^3})$ в 1,8 раза; нефтяные углеводороды $(76,4-82,9\,\mathrm{Mr/дm^3})$ в 276 раз; бенз(а)пирен $(0,0000326\,\mathrm{Mr/дm^3})$ в 32,6 раза. Отмечено превышение нормативов (СанПиН 2.1.5.980-00)

по окраске вод в 128 раз; ХПК (1440 мг $O/дм^3$) - 96 раз; а также низкое (в 25 раз ниже нормы) содержание растворенного кислорода (0,16 мг/ $дм^3$).

Определение токсичности замазученных сточных вод с использованием в качестве тест-объекта *Daphnia magna Straus* показало, что исследуемая сточная вода обладает ярко выраженным токсическим эффектом (0,51%-ная концентрация (разбавление в 196 раз) вызывает гибель 50% тест-объектов за 96 часов экспозиции (ЛКР₅₀₋₉₆); 0,031%-ная концентрация (разбавление в 3225 раз) вызывает гибель не более 10% тест-объектов за 96 часов экспозиции (БКР₁₀₋₉₆) и не может быть сброшена в открытые водоемы, т.к. представляет серьезную угрозу для гидробионтов.

Биотестирование по проращиванию семян редиса показало, что средняя длина корней растений в опыте составила 41% по отношению к контролю, что свидетельствует о явном ингибирующем действии на растения и отсутствии возможности сброса исследуемых стоков на земледельческие поля орошения.

При биотестировании с использованием в качестве тест-объекта *Daphnia magna Straus* установлено, что замазученные сточные воды относятся к сильнозагрязненным, класс опасности — второй (высокоопасные отходы), что предполагает отсутствие возможности их сброса, как в водоемы, так и на земледельческие поля орошения.

Микробиота замазученных сточных вод резервуара-накопителя представлена, как гетеротрофными, так и автотрофными (цианобактерии) Среди гетеротрофов в сточных вод выявлены (рис.1) организмами. представители различных физиологических групп. Отмечено, распределение численности физиологических групп микроорганизмов в (0,5)И срединном (3,0 м) горизонтах поверхностном M) максимальную численность (до 10⁵ КОЕ/мл) составляют протео-, амило-, сахарозо-, глюкозолитические и сульфатредуцирующие микроорганизмы.

При прямом микроскопировании проб замазученных сточных вод обнаружены единичные клетки одноклеточных (Synechocystis salina) и нитчатых (Oscillatoria Woronichinii, Phormidium dimorphum) цианобактерий.

Выделение цианобактерий из сточных вод методом накопительной культуры на среде BG-11 при постоянном освещении 300-500 лк при температуре 20-25°С проводили до появления характерных признаков роста цианобактерий (наличие рыхлых обрастаний темно-зеленого цвета), эдификаторы накопительной культуры представлены нитчатыми (Oscillatoria Woronichinii) и одноклеточными (Synechocystis salina) цианобактериями; отмечено присутствие Phormidium dimorphum. Среди микроорганизмовспутников в гликокаликсе цианобактерий присутствуют микроорганизмы различных физиологических групп (рис. 2).

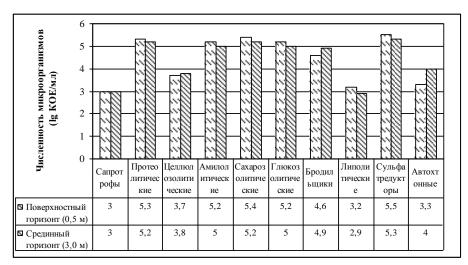


Рис. 1. Физиологические группы микроорганизмов в сточной воде резервуара-накопителя.

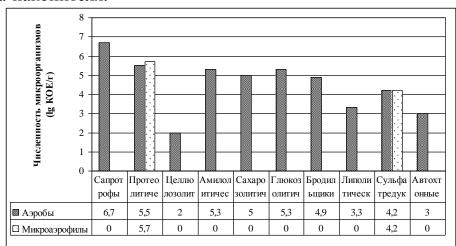


Рис 2. Физиологические группы микроорганизмов-ассоциантов накопительной культуры ЦБС.

Преобладающими по численности (до 10^5 - 10^6 KOE/г) являются сапротрофы, протео-, амило- , глюкозо- и сахарозолитические; минимальной численностью (до 10^2 - 10^3 KOE/г) - липолитические, автохтонные и целлюлозолитические микроорганизмы.

Таким образом, результаты проведенных исследований позволяют резервуар-накопитель замазученных сточных рассматривать вод экстремальную водную экосистему, характеризующуюся высоким содержанием органического вещества, нефтяных углеводородов токсичностью. Наличие в замазученных сточных водах как автотрофных, так и гетеротрофных микроорганизмов, усваивающих легко гидролизуемые полимеры, олигомеры (пептон, крахмал, сахароза) и мономеры (глюкоза), гидролизующих более сложные соединения (белки, жиры, целлюлозу и автохтонное органическое вещество), говорит о высокой самоочищающей способности микрофлоры альго-И возможности применения биологических способов интенсификации очистки исследуемых сточных вод.

Глава 4. Моделирование процессов очистки замазученных сточных вод

Подбор субстрата для иммобилизации ЦБС (аборигенного на основе Synechocystis salina, Oscillatoria Woronichinii и коллекционного на основе Oscillatoria amphibia), проведенный среди инертных носителей (пеноизол, пенопласт, поролон и стекловолокно) показал, что наиболее подходящим для развития цианобактерий закрепления, роста является Установлено, что максимально интенсивно в микроэкосистемах на основе сточной иммобилизованные замазученной воды на поролоне (аборигенное на основе Synechocystis salina, Oscillatoria Woronichinii и Oscillatoria коллекционное основе amphibia) способствуют обесцвечиванию (увеличение максимальному сточных вод светопроницаемости 65%, при светопроницаемости ДО исходных замазученных сточных вод -0.23 %), которые и были отобраны для дальнейших исследований.

Экспериментальные исследования по изучению роли цианобактериальных сообществ в процессах очистки замазученных сточных вол

Изучение роли циано-бактериальных сообществ В активизации процессов очистки замазученных сточных вод проводили в модельных экспериментах, для чего в стеклянные аквариумы (30 л) вносили по 10 л предварительно отфильтрованных через песчаный фильтр исследуемых сточных вод и циано-бактериальные сообщества, иммобилизованные на поролоне: микроэкосистема 3 - накопительная культура аборигенного ЦБС на основе Oscillatoria Woronichinii и Synechocystis salina, выделенного из накопителя сточных вод; микроэкосистема 2 - коллекционное ЦБС на основе Oscillatoria amphibia. Контроль – микроэкосистема 1 с отфильтрованной через песчаный фильтр сточной водой. Продолжительность эксперимента -35 суток, контрольные точки – 10-е, 20-е и 35-е сутки

Для замазученных сточных вод, используемых в эксперименте отмечены высокие показатели бихроматной (1440 мг ${\rm O/дm}^3$) и перманганатной (276 мг ${\rm O/дm}^3$) окисляемости; содержания растворенного органического вещества (852 мг/дм³) и суммарных нефтяных углеводородов (82,9 мг/дм³). Превышение предельно допустимой концентрации по суммарным нефтяным углеводородам составляет 276 ПДК, по бенз(а)пирену – 32 ПДК.

В ходе экспериментальных исследований отмечена убыль суммарных нефтяных углеводородов на всех этапах очистки и во всех вариантах модельных экосистем. В целом, по окончании эксперимента убыль составила (%): в контроле (микроэкосистема 1) - 92,7; при внесении аборигенного сообщества на основе *Oscillatoria Woronichinii* и *Synechocystis salina* (микроэкосистема 3) — 94,2; коллекционного сообщества на основе *Oscillatoria amphibia* (микроэкосистема 2) — 95,7.

Установлено, что соотношение пирогенных полиаренов (пирен и банз(а)пирен) к полиаренам биогеохимического фона (фенантрен и хризен)

(Немировская, 2000) в воде микроэкосистем с внесением коллекционного ЦБС по окончании экспозиции составляет 0,46, что значительно ниже 1, и свидетельствует о способности сообщества на основе *Oscillatoria amphibia* максимально снижать антропогенное влияние ПАУ.

Сопоставление содержания «МЯГКИХ» И «жестких» органических загрязнений ПО определению химического потребления кислорода бихроматным методами (Лурье, Рыбникова, перманганатным и показало, что, по окончании эксперимента максимальное снижение данного характерно микроэкосистем соотношения (1:2,4)ДЛЯ c коллекционного ЦБС на основе Oscillatoria amphibia при более интенсивном снижении бихроматной окисляемости (85 %). Максимальное снижение содержания растворенного органического вещества (РОВ) отмечено также во 2-й микроэкосистеме 74%; тогда как в 3-й микроэкосистеме - 66% и в воде контрольной микроэкосистемы - 57%.

Кроме этого, отмечено интенсивное обесцвечивание сточных вод при внесении циано-бактериальных сообществ: в микроэкосистеме 3 (Oscillatoria Woronichinii и Synechocystis salina) — на 86 %, в микроэкосистеме 2 (Oscillatoria amphibia) - 85% -, тогда как в контроле - 36%.

При изучении микробного состава воды по окончании эксперимента во всех микроэкосистемах установлено снижение численности органотрофов (протео-, целлюлозо- и амилолитических), связанное, вероятно, с уменьшением содержания органического вещества: снижение ХПК на 24-85%, СНУ - 92,7-95,7% и РОВ - 74-57%. Для автохтонных микроорганизмов, имеющих большее сродство к субстрату сточных вод, по окончании эксперимента характерно увеличение их численности на 2 порядка в микроэкосистемах с внесением циано-бактериальных сообществ (рис. 3).

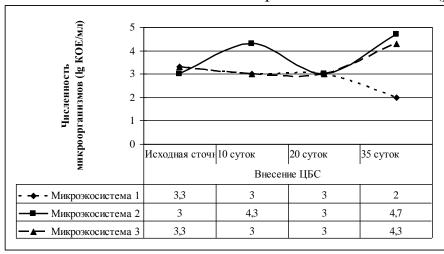


Рис. 3. Динамика численности автохтонных микроорганизмов в воде экспериментальных модельных экосистем.

Биотестирование воды модельных экосистем по окончании экспозиции по прорастанию семян редиса (СанПиН 2.1.7.573-96) показало, что вода в контроле (микроэкосистема 1) оказывает ингибирующее действие на семена редиса, а вода микроэкосистем с внесенными ЦБС не угнетает роста тестобъектов.

Таким образом, наиболее эффективным в процессах очистки (снижение содержания суммарных нефтяных углеводородов до 95,7%) является коллекционное циано-бактериальное сообщество, эдификатором которого является *Oscillatoria amphibia*. В то же время, следует отметить, что наибольшую эффективность в обесцвечивании сточных вод (83%) проявило аборигенное сообщество, выделенное из сточных вод резервуара-накопителя.

Моделирование комплексной очистки замазученных сточных вод

определения возможных приемов комплексной замазученных сточных вод поставлен модельный эксперимент, включающий следующие этапы: 1) фильтрацию через песчаный фильтр; 2) принудительное 3) внесение циано-бактериальных аэрирование; иммобилизованных на инертном носителе; 4) внесение высшей водной Для постановки модельных экосистем растительности. стеклянные аквариумы, куда вносили по 15 л пропущенной через песчаный фильтр сточной воды. Принудительное аэрирование осуществляли с использованием компрессора (Air – 2001, Китай) в течение 10 сут. Затем в циано-бактериальные сообщества (20)аквариумы вносили иммобилизованные на инертном носителе (поролон): накопительную аборигенного ЦБС на Oscillatoria Woronichinii культуру основе Sinechocystis накопителя salina, выделенного сточных вод (микроэкосистема 3) и коллекционное ЦБС на основе Oscillatoria amphibia (микроэкосистема 2). Экспонирование микроэкосистем бактериальными сообществами продолжалось в течение 40 сут. Затем цианобактериальные сообщества были удалены и в микроэкосистемы вносили высшие водные растения (BBP): валлиснерия спиральная (Vallisneria spiralis); элодея канадская (Elodea canadensis); ряска малая (Lemna minor). Экспонирование микроэкосистем с ВВР продолжалось в течение 30 сут.

Общая продолжительность эксперимента составила 80 суток. Контролем служила модельная экосистема с отфильтрованной через песчаный фильтр сточной водой (микроэкосистема 1).

Замазученные сточные воды резервуара-накопителя, используемые в эксперименте, характеризуются высокими показателями бихроматной (2520 мг О/дм³) и перманганатной (362 мг О/дм³) окисляемости; содержания растворенного органического вещества (728 мг/дм³); суммарных нефтяных углеводородов (76,4 мг/дм³). Превышение предельно допустимой концентрации по суммарным нефтяным углеводородам составляет 255 ПДК, по бенз(а)пирену – 32 ПДК.

В ходе экспериментальных исследований отмечена убыль суммарных нефтяных углеводородов на всех этапах очистки и во всех вариантах модельных экосистем: в контроле (микроэкосистема 1) — 82,0%; в микроэкосистеме 2-91,3%; в микроэкосистеме 3-91,9%.

Убыль общего содержания ПАУ в микроэкосистеме 2 составила 94,0%; микроэкосистеме 3 - 89,9%; микроэкосистеме 1 (контроль) — 0,2%. Это

свидетельствует о том, что последовательное внесение ЦБС на основе нитчатых цианобактерий *Oscillatoria amphibia* и ВВР (валлиснерия спиральная, элодея канадская, ряска малая) (микроэкосистема 2) способствует максимальной интенсификации процессов очистки сточных вод от полиароматических углеводородов.

При этом, установлено, что в микроэкосистемах с ЦБС и ВВР процесс разложения органических веществ происходит в целом интенсивнее, максимальное снижение перманганатной и бихроматной окисляемости отмечено в микроэкосистеме 2 – 74 % (соотвественно): 77 И (соответственно); 77 % микроэкосистеме 3 66 И микроэкосистеме 1 - 61% и 75 % (соотвественно). Снижение содержания РОВ составило: микроэкосистема 2 – 66%, микроэкосистема 3 – 55% и контроль – 38%.

Максимальное снижение оптической плотности сточных вод в экспериментальных исследованиях отмечено при внесении циано-бактериальных сообществ - в микроэкосистеме 2 на 71%; в микроэкосистеме 3-68%; контрольной микроэкосистеме 1-8% (рис. 4).

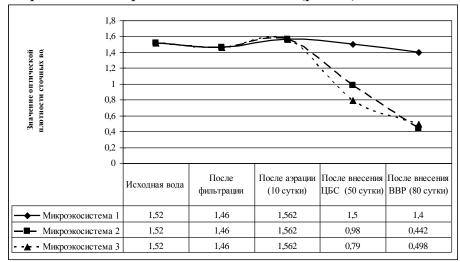
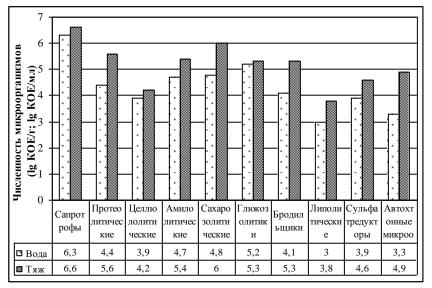
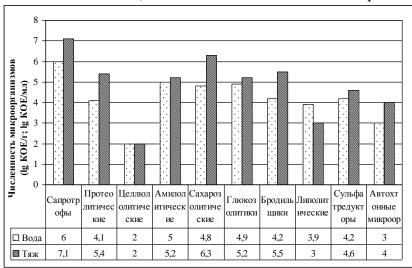



Рис. 4. Динамика оптической плотности воды экспериментальных экосистем.


Изучение видового состава циано-бактериальных сообществ при экспонировании модельных экосистем со сточной водой показало, что в иммобилизованных на поролоне сообществах, как во 2-ой, так и в 3-ей экосистемах доминирующие виды цианобактерий аналогичны видам во вносимых на первоначальном этапе сообществах: в микроэкосистеме 2 -Oscillatoria amphibia, В микроэкосистеме 3 - нитчатые Woronichinii и одноклеточные Sinechocystis salina. В то же время, на поверхности стенок сосудов в 3-ей микроэкосистеме сформировались эдификаторами скудные обрастания, которых являлись нитчатые цианобактерии Phormidium dimorphum, единичные клетки которых присутствовали в составе замазученных сточных вод.

Анализ численности исследуемых групп микроорганизмов в модельных экосистемах показал, что с внесением ЦБС отмечается превалирование

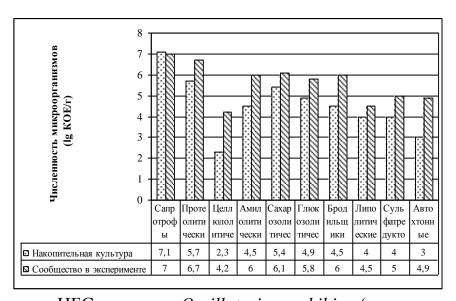
численности микроорганизмов в тяжах цианобактерий (рис. 5) в сравнении с водной фракцией модельных экосистем.

коллекционное ЦБС на основе Oscillatoria amphibia

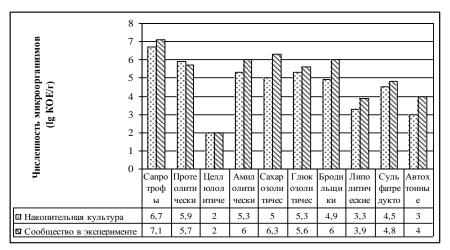
аборигенное ЦБС на основе Oscillatoria Woronichinii и Synechocystis salina Рис. 5. Физиологические группы микроорганизмов в экспериментальных экосистемах.

Данное (Дзержинская, явление, отмеченное ранее 2005), Сопрунова, 1998. специфическое строение показывает, ЧТО цианобактерий (нитчатое полисахаридного строение, наличие способствует иммобилизации микроорганизмов как внутри тяжей, так и вокруг них, что позволяет циано-бактериальным сообществам создавать зоны повышенной активности деградации различных загрязнений.

Кроме этого установлено, что численность микроорганизмов-спутников, присутствующих в сформировавшихся в замазученных сточных водах ЦБС, отличается от показателей численности накопительныхи культур, используемых в эксперименте (рис. 6).

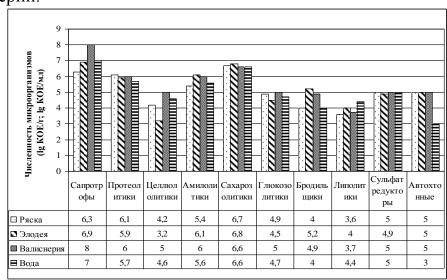

Эти особенности согласуются с данными, полученными ранее при исследовании процессов деструкции трудноразлагаемых соединений в сточных водах целлюлозно-бумажной промышленности (Дзержинская, 1992,

1993), газо-химического комплекса (Сопрунова, 1998). Это доказывает, что при вселении биоценозов на основе цианобактерий в сточные воды различных производств в каждом из них формируется своеобразный состав ассоциантов, направленный на деградацию загрязнений различного рода (Дзержинская, 1993).

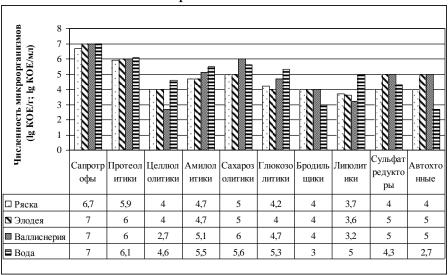

При сопоставлении численности исследуемых групп микроорганизмов, присутствующих в воде и в перифитоне ВВР установлено, что в микроэкосистемах 2 и 3 микроорганизмы перифитона растений также превышают численность микроорганизмов в воде (рис. 7). При этом, для автохтонной микрофлоры, присутствующей в перифитоне, характерно превышение численности на 2 порядка в сравнении с водой модельных экосистем.

Биотестирование воды в микроэкосистемах по окончании экспозиции с использованием *Daphnia magna Straus* показало, что при внесении коллекционного ЦБС на основе *Oscillatoria amphibia* и ВВР происходит снижение класса опасности сточных вод со второго (высокоопасные отходы) до четвертого (малоопасные отходы).

Таким образом, на основании проведенных экспериментальных исследований выявлено, что последовательное внесение в замазученные сточные воды коллекционного ЦБС на основе *Oscillatoria amphibia* и ВВР способствует существенному снижению содержания нефтяных углеводородов, органического вещества и токсичности.



коллекционное ЦБС на основе Oscillatoria amphibian (микроэкосистема 2)



аборигенное ЦБС на основе Oscillatoria Woronichinii и Synechocystis salina (микроэкосистема 3)

Рис. 6. Физиологические группы микроорганизмов-спутников цианобактерий.

микроэкосистема 2

микроэкосистема 3

Рис. 7. Физиологические группы микроорганизмов в микроэкосистемах после экспонирования высших водных растений.

ЗАКЛЮЧЕНИЕ

В условиях современного развития промышленности деятельность многочисленных предприятий ПО хранению И распределению нефтепродуктов приводит к образованию большого количества сточных вод и нефтезагрязненных жидких отходов, характеризующихся разнообразием и сложностью состава. При их очистке наряду с индустриальными методами следует использовать и биологические способы, т.к. процессы самоочищения имеют очистка стоков загрязненных водоемов И преимущественно биологическую основу (Винберг, 1966 и др.; Кравец, 1974; 1976) и способствуют биологическому оздоровлению окружающей среды.

При изучении эффективности двухступенчатой (фильтрация → внесение ЦБС, иммобилизованных на инертном носителе) и комплексной (фильтрация \rightarrow принудительное аэрирование \rightarrow внесение ЦБС, иммобилизованных на инертном носителе → внесение BBP) очистки замазученных сточных вод в модельных экспериментальных исследованиях установлено интенсивное содержания нефтяных снижение суммарных углеводородов, полиароматических углеводородов, растворенного органического вещества, химического потребления кислорода, как при внесении биологических агентов очистки (ЦБС и ВВР), так и при участии аборигенного микробиоценоза сточных вод. При этом, отмечено, что в процессе фильтрации происходит снижение содержания нефтяных углеводородов на 49,4-60%, что связано с удалением из сточных вод нерастворимой фракции нефтяных углеводородов. В процессе аэрации сточных сопровождающейся насыщением воды кислородом, отмечено снижение содержания нефтяных углеводородов на 20-25%. Дальнейшее снижение нефтяных концентрации углеводородов В экспериментальных микроэкосистемах за счет деятельности аборигенного микробиоценоза составило 8,5-43,3%. Несмотря на то, что внесение ЦБС и ВВР активизирует углеводородов нефтяных лишь 3,0-4,1% соответственно, основным преимуществом как ЦБС, так и ВВР является интенсивное обесцвечивание сточных вод (снижение оптической плотности на 50-63% по сравнению с контролем) и уменьшение токсичности (снижение класса опасности отходов со второго до четвертого).

Отмечено, что сточные воды, очищенные двухступенчатым методом способны стимулировать рост растений, и могут быть сброшены на поля фильтрации. Очистка комплексным методом приводит к уменьшению острой токсичности сточных вод и снижению класса опасности сточных вод, но при этом очищенные воды угнетают рост растений. Таким образом, очищенные многоступенчатым методом стоки могут быть сброшены в водоем при соответствующем (1:7,4) разбавлении.

В целом, использование в качестве агентов очистки представителей фототрофных организмов (цианобактерий, высших водных растений) способствует повышению эффективности детоксикации и биоремедиации (биологическому оздоровлению) очищаемых стоков, и в зависимости от

способа дальнейшего размещения очищенных стоков (сброс на рельеф или в водоем) можно рекомендовать как двухступенчатую, так и комплексную очистку в качестве основы для разработки методов биологической очистки замазученных сточных вод.

ВЫВОДЫ

- 1. Определение гидрохимических параметров замазученных сточных вод резервуара-накопителя показало присутствие в них высокого содержания тяжелоокисляемых органических веществ: нефтяных углеводородов 76,4-82,9 мг/дм³, ПАУ 1610,9 нг/д³; ХПК 276-1440 мг O_2 /дм³; высокая оптическая плотность 2,08 и токсичность (II класс опасности отходов).
- 2. В составе замазученных сточных вод превалируют аборигенные гетеротрофные микроорганизмы (КОЕ/мл): липолитики $(1,5*10^3)$, амилолитики $(1,7*10^5)$, протеолитики $(2,2*10^5)$, сахарозолитики $(2,4*10^5)$, сульфатредукторы $(1,4*10^5)$, глюкозолитики $(1,5*10^5)$, бродильщики $(4,6*10^4)$, целлюлолитики $(5,0*10^3)$, сапротрофы $(3,0*10^3)$, олиготрофы $(2,0*10^3)$.
- 3. Фототрофные организмы замазученных сточных вод представлены единичными клетками *Oscillatoria*, *Sinechocystis*, *Phormidium*. Методом накопительной культуры из замазученных сточных вод выделено альгобактериальное сообщество, эдификаторами которого являются цианобактерии родов *Oscillatoria*, *Sinechocystis*.
- 4. При изучении роли циано-бактериальных сообществ в очистке замазученных сточных вод установлено, что наибольшей эффективностью обладает циано-бактериальное сообщество на основе *Oscillatoria amphibia*, что проявляется в снижении содержания нефтяных углеводородов в целом на 95,7%; окисляемости перманганатной 69% и бихроматной 85%; содержании POB 74%.
- 5. При моделировании многоступенчатой очистки замазученных сточных вод (фильтрация -- принудительное аэрирование -- внесение цианобактериальных сообществ, иммобилизованных носителе→внесение высшей водной растительности), эффективным является использование циано-бактериального сообщества на основе Oscillatoria amphibia и высших водных растений валлиснерии спиральной (Vallisneria spiralis), элодеи канадской (Elodea canadensis), ряски малой (Lemna minor), способствующее снижению содержания нефтяных углеводородов в целом на 91,3%, ПАУ – 94% и РОВ – 66%; перманганатной окисляемости – 77%; оптической плотности сточных вод – 71%, класса опасности отходов со ІІ (высокоопасные) до ІУ (малоопасные).
- 6. Установлено, что внесение циано-бактериальных сообществ и высшей водной растительности в замазученные сточные воды способствует увеличению в гликокаликсе цианобактерий и в перифитоне ВВР в сравнении с водной средой на 2 порядка численности автохтонных (аборигенных)

микроорганизмов, имеющих большее сродство к субстрату сточных вод, что создает зоны повышенной активности деградации загрязняющих соединений замазученных сточных вод.

Список работ, опубликованных по теме диссертации

- 1. Сопрунова О.Б., Сайфутдинова (Гальперина) А.Р. Нефтяное загрязнение морских вод и альго-бактериальные сообщества // Южно-Российский вестник геологии, географии и глобальной энергии: Изд-во АГУ, 2003, №3. с.198-199.
- 2. Сопрунова О.Б., Сайфутдинова (Гальперина) А.Р. Экспериментальное изучение процессов деструкции нефти альго-бактериальными сообществами // Экология и научно-технический прогресс: Матер. 2-ой межд. научно-практ конф. Пермь, 2003.- c.209-210.
- 3. Сайфутдинова (Гальперина) А.Р. Сообщества нефтеокисляющих микроорганизмов вод Северного Каспия // Сборник научных статей «Наука: Поиск 2003», Астрахань, 2003, выпуск 1. с.205 207.
- 4. Сайфутдинова (Гальперина) А.Р. Альго-бактериальные сообщества в процессах самоочищения водной среды от нефтепродуктов // Тезисы докладов X Всероссийской студенческой научной конференции «Экология и проблемы защиты окружающей среды», Красноярск, 2003. c.80 81.
- 5. Сопрунова О.Б., Сайфутдинова (Гальперина) А.Р. Бактериальный и грибной компоненты цианобактериальных ценозов, сформировавшихся в присутствии нефти и нефтепродуктов // Материалы международной научнопрактической конференции «Проблемы и перспективы реабилитации техногенных экосистем», Астрахань, 2005. с.211-214.
- 6. Сайфутдинова (Гальперина) А.Р. Ассоцианты сообществ на основе цианобактерий, развивающихся в присутствии нефти // Сборник научных студенческих работ Второго Всероссийского конкурса студенческих работ, посвященный 200-летию Московского общества испытателей природы, Москва, 2005. с.426-428.
- 7. Сайфутдинова (Гальперина) А.Р. Некоторые аспекты получения чистых культур цианобактерий Материалы международной конференции, посвященной 75-летию Биологического факультета МГУ им. М.В. Ломоносова «Грибы и водоросли в биоценозах», Москва, 2006. с.131-132.
- 7. Сайфутдинова (Гальперина) А.Р. Перспективные направления разработки биологических методов очистки экосистемы Северного Каспия от нефтяных углеводородов // Материалы Всероссийской конференции аспирантов и студентов по приоритетному направлению «Рациональное природопользование», Ярославль, 2006. с.285-289.
- 8. Сопрунова О.Б., Сайфутдинова (Гальперина) А.Р. Циано-бактериальные сообщества в условиях моделирования нефтяного загрязнения // Материалы Всероссийской конференции с международным участием «Фундаментальные и прикладные аспекты исследования симбиотических систем», Саратов, 2007. с.31.

- 9. Гальперина А.Р. Циано-бактериальные сообщества в практике охраны водных экосистем от нефтяных углеводородов // Тезисы 11-й Пущинской международной школы-конференции молодых ученых «Биология наука XXI века», Пущино, 2007. с.113.
- 10. Сопрунова О.Б., Гальперина А.Р. Особенности аборигенной микрофлоры замазученных сточных вод // Защита окружающей среды в нефтегазовом комплексе, 2008, №5. с.33-35.
- 11. Сопрунова О.Б., Гальперина А.Р. Аборигенная микрофлора замазученных сточных вод в практике охраны водных экосистем от нефтяных углеводородов // Тезисы российской школы-конференция «Генетика микроорганизмов и биотехнология», посвященная 40-летию института ГосНИИгенетика, Москва Пущино, 2008. с.120-121.
- 12. Сопрунова О.Б., Гальперина А.Р. Аборигенная микрофлора замазученных сточных вод // Тезисы 12-й Пущинской международной школы-конференции молодых ученых «Биология наука XXI века», Пущино, 2008. с.200.
- 13. Сопрунова О.Б., Гальперина А.Р. Биогеохимические функции микроорганизмов в водных техногенных экосистемах // Материалы 6-й международной биогеохимической школы «Биогеохимия в народном хозяйстве: фундаментальные основы ноосферных технологий», Астрахань, 2008. с.77-78.
- 14. Сопрунова О.Б., Гальперина А.Р. Роль аборигенной микрофлоры в биодеградации нефтяных углеводородов в водных техногенных экосистемах // Материалы Международной научно-практической конференции, посвященной 100-летию со Дня рождения К.В. Горбунова «Фундаментальные аспекты биологии в решении актуальных экологических проблем», Астрахань, 2008. с.39-43.
- 16. Сопрунова О.Б., Гальперина А.Р. Перспективные направления эффективной очистки токсичных сточных вод // Бюллетень Московского общества испытателей природы, отдел биологический, том 114, вып. 3; Приложение 1, часть 1, Москва, 2009. с.183-186.
- 17. Гальперина А.Р. Аборигенная микрофлора как перспективный объект экологических биотехнологий // Материалы Всероссийского симпозиума с международным участием «Современные проблемы физиологии, экологии и биотехнологии микроорганизмов», Москва, 2009. с.213.
- 18. Сопрунова О.Б., Гальперина А.Р. Разработка технологии биоремедиации замазученных сточных вод // Материалы Международной научной конференции Инновационные технологии в управлении, образовании, промышленности «АСТИНТЕХ 2010», Астрахань, 2010. с.102-104.
- 19. Сопрунова О.Б., Гальперина А.Р., Нгуен Виет Тиен Перспективы аборигенной микрофлоры в детоксикации и очистке нефтесодержащих отходов // Материалы 1-й научно-практической конференции «Новейшие

технологии освоения месторождений углеводородного сырья и обеспечение безопасности экосистем Каспийского шельфа», Астрахань: Изд-во АГТУ, 2010. – с.184.

- 20. Гальперина А.Р. Разработка приемов биоремедиации сточных вод с остаточной замазученностью // Юг России: экология, развитие, 2010. № 4. с.109-112.
- 21. Гальперина А.Р. Аборигенные микроорганизмы замазученных сточных вод как основа экологических биотехнологий // «Известия Самарского научного центра Российской академии наук», 2011. Т.13, № 5(3). с. 132-135.