СТОЛЯРОВА ЕВА АЛЕКСАНДРОВНА

БИОЛОГИЧЕСКАЯ ТЕХНОЛОГИЯ ИЗВЛЕЧЕНИЯ МЕДИ ИЗ ОТХОДОВ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД

03.00.23 - биотехнология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Учреждении Российской академии наук Институт биологии Уфимского научного центра РАН

Научный руководитель: доктор биологических наук, профессор

Логинов Олег Николаевич

Официальные оппоненты: Мавзютов Айрат Радикович

доктор медицинских наук, профессор

Петухова Надежда Ивановна

кандидат биологических наук, доцент

Ведущая организация: Институт фундаментальных проблем

биологии РАН, г. Пущино

Защита состоится 18 декабря 2009 года в 14 часов на заседании Объединенного совета по защите докторских и кандидатских диссертаций ДМ 002.136.01 при Учреждении РАН Институт биологии Уфимского научного центра РАН по адресу: 450054, г.Уфа, Проспект Октября, 69, тел./факс: (347)235-62-47, e-mail: <u>ib@anrb.ru</u>

С диссертацией можно ознакомиться в библиотеке Уфимского научного центра РАН и на официальном сайте АН РБ по адресу: www.anrb.ru/inbio/dissovet

Автореферат разослан « 16 » ноября 2009 г.

Ученый секретарь диссертационного совета, кандидат биологических наук, доцент

Р.В. Уразгильдин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В результате наращивания промышленного производства на поверхности Земли было создано много новых медьсодержащих объектов техногенного происхождения. Это отходы горно-обогатительного и металлургического производства: отвалы бедных руд, хвосты обогащения, шлаки и шламы металлургического производства, промышленные стоки. В настоящее время они не могут быть подвергнуты вторичной переработке в рамках традиционных технологических схем и представляют собой источник чрезвычайной экологической опасности для природной среды в местах хранения возле горно-обогатительных предприятий.

Одна из возможностей переработки отходов флотационного обогащения руд связана с биогеотехнологиями: применением микроорганизмов и их метаболитов для избирательного извлечения металлов из рудных пород. Разработка таких инновационных технологий активно ведется в ряде стран, например в Испании (Palencia et al., 2002; Romero et al., 2003), странах Южной Америки (Falco et al., 2003; Dresher, 2004), Австралии (Brierley, 2001) тогда как в России этой проблемой занимаются лишь единичные научно-исследовательские учреждения (Каравайко и др., 2006; Фомченко, Бирюков, 2009). Кроме того, разработчиками технологий основное внимание уделяется переработке товарных руд и рудных концентратов, а не техногенным отходам, вторичное использование которых является более актуальной проблемой.

Видовой состав и окислительная активность биоценоза - одни из ключевых факторов, определяющих скорость и глубину биологического выщелачивания руд (Башлыкова и др., 2003; Каравайко и др., 2006). В свою очередь для литотрофных бактерий важнейшим фактором среды является энергетический субстрат, характер и количество которого дает преимущество штаммам с определенным генотипом (Кондратьева и др., 2004). Отходы флотационного обогащения отличны от руд и концентратов по содержанию целевых компонентов, состоянию минералов и питательным субстратам для литотрофных бактерий, что делает актуальным разработку специальных биотехнологий с применением активных адаптированных штаммов.

Цель работы - исследование процесса бактериального выщелачивания меди из отходов флотационного обогащения сульфидных руд горно-обогатительных предприятий Южного Урала.

Задачи:

- 1. Выделить из отходов флотации горно-обогатительных предприятий Южного Урала и исследовать микроорганизмы, способные к активному окислению сульфидных минералов.
- 2. Оценить возможность и условия применения активных в отношении окисления сульфидов хемолитотрофных микроорганизмов для извлечения меди из отходов обогащения Сибайского филиала Учалинского ГОКа, Бурибаевского ГОКа, Гайского ГОКа и Медногорского медно-серного комбината.
- 3. Разработать технологию получения меди путем ее биологического выщелачивания из отходов флотационного обогащения сульфидных медноцинковых руд.

Научная новизна. Выделены, изучены и впервые запатентованы в РФ два новых штамма *Acidithiobacillus ferrooxidans* с высокой биовыщелачивающей активностью.

Впервые показана возможность их использования для биологического выщелачивания отходов обогащения медно-цинковых руд, с получением медного порошка и пигмента оксида железа.

Практическая значимость. Выделены и запатентованы в РФ штаммы бактерий *Acidithiobacillus ferrooxidans* ИБ 1 и *Acidithiobacillus ferrooxidans* ИБ 12, предназначенные для промышленного выщелачивания меди из отходов флотационного обогащения сульфидных медно-цинковых руд.

Подобраны основные технологические параметры извлечения меди из отходов флотационного обогащения руд Сибайского филиала Учалинского горнообогатительного комбината и Бурибаевского горно-обогатительного комбината.

Апробация работы. Основные результаты исследований были представлены на XIX и XXI Международной научно-технической конференции «Химические реактивы, реагенты и процессы малотоннажной химии» (Уфа, 2006, 2008), I всероссийской молодежной научной конференции «Молодежь и наука на севере» (Сыктывкар, 2008), Международной научно-технической конференции «Китайско-Российское научно-техническое сотрудничество. Наука-образование-инновации» (Харбин, 2008), III и IV Всероссийских научно-практических конференциях «Проблемы экологии Южного Урала» (Оренбург, 2007, 2009).

Публикации. По материалам диссертации опубликовано 13 научных работ, в том числе 2 патента Российской Федерации и 5 статей в рецензируемых научных журналах, входящих в перечень ВАК, рекомендованных для соискателей ученой степени кандидата биологических наук.

Объем и структура диссертации. Диссертация состоит из введения, обзора литературы, описания объектов и методов исследования, экспериментальной части, заключения, выводов, списка цитируемой литературы. Работа изложена на 129 страницах, содержит 26 таблиц и 24 рисунка. Список литературы включает 108 наименований, из них 37 на русском языке.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектами исследований служили сульфидные медно-цинковые руды из отвалов обогащения Учалинского горно-обогатительного комбината и его Сибайского филиала, Бурибаевского горно-обогатительного комбината, Медногорского медно-серного комбината, Гайского горно-обоготительного комбината. Рудные образцы отбирались с глубины 20-100 см.

Объектами исследований являлись Acidithiobacillus также штаммы ferrooxidans. выделенные в процессе исследования и депонированные в колллекции микроорганизмов Института биологии УНЦ РАН; а так же типовой штамм Acidithiobacillus ferrooxidans DSM 14882, полученный из Всероссийской промышленных микроорганизмов. Идентификацию коллекции штаммов микроорганизмов ИБ1 и ИБ12 проводили на основании ключа, приведенного в определителе бактерий (Берджи, 1997).

Для определения численности железобактерий использовали среду Сильвермана-Люндгрена 9К и хорошо поддерживающую их рост питательную среду DSM 882 из ряда рекомендованных German Collection of Microorganisms and Cell Cultures. Численность бактерий определяли в серии предельных разведений на жидкой питательной среде в шестикратной повторности, титр вычисляли по таблицам Мак-Креди.

Моделирование процесса биологического выщелачивания руд проводили в лабораторных аппаратах объемом 8 л с 2 кг руды, аэрацией 500 мл/мин и фильтрацией раствора сквозь слой руды Выщелачивание меди оценивали по ее убыли в образцах руды и скорости накопления в жидкой фазе. Подбор температурного режима, источников энергии для бактериальных штаммов, необходимого количества микробного инокулята, состава пульпы для выщелачивания, а также изучение влияния тяжелых металлов на штаммы бактерий были проведены в колбах Эрленмейера объемом 250-500 мл с 100-300 мл среды DSM 882. Влияние возрастающих концентраций углекислого газа на бактерии изучали в 5 л герметичных емкостях.

Апробация процесса биовыщелачивания в полупромышленных условиях проводили на установках объемом 0,3 м³ и 10 м³, состоящих из ферментера, аппарата для выщелачивания, емкостей для осаждения и цементации, снабжених насосами для подачи воздуха и поддержания массообмена в выщелачивающем растворе.

Содержание меди, цинка и общего железа в пробах определяли методом атомной абсорбции на спектрофотометре марки AAS-3 (Carl Zeiss, Германия) после предварительного их растворения. Концентрацию Fe^{3+} определяли спектрофотометрическим методом с сульфосалициловой кислотой, содержание общей серы - фазово-аналитичесим методом.

Расчет ошибки средних значений показателей проводили при 95% уровне достоверности с использованием программы Excel.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Микробиологическое исследование отходов флотационного обогащения сульфидных руд

Для проведения микробиологических и химических анализов в июле-августе 2006 г. были отобраны образцы отработанных руд с нескольких площадок на хвостохранилищах флотации медно-цинковых руд. Была показана зависимость между численностью в них микроорганизмов и давностью складирования отвалов (табл. 1).

Из свеже отсыпанных руд микроорганизмы были выделены в количестве 1-10 клеток/г или не были обнаружены вообще. Численность бактерий в рудах, хранившихся в течение нескольких лет, была гораздо выше, а соотношение групп, способных использовать разные соединения серы и железа, индивидуально для каждой обследованной площадки. Высокий титр литоавтотрофных железоокисляющих микроорганизмов был зарегистрирован в подотвальных водах. Для Гайского ГОКа эта величина составила для разных образцов от 10^3 до 10^6 клеток/мл, для Бурибаевского ГОКа 10⁶-10⁷ клеток/мл, Медногорского медносерного комбината $-10^3 - 10^6$ клеток/мл. Таким образом, в отходах флотации, первоначально почти не содержавших микроорганизмов, в процессе их хранения происходило постепенное накопление литоавтотрофных и гетеротрофных бактерий.

Таблица 1 Численность микроорганизмов, использующих разные источники энергии, и количество металлов, растворимых в 1н H_2SO_4 , в отработанных рудах горнообогатительных комбинатов

Срок хранения,	Численность микроорганизмов (клеток/г),			Содержание	
лет	окисляющих			растворимых форм, %	
	Fe (II)	S	S ²⁻	меди	цинка
Гайский ГОК					
менее 1	1,7±0,2	-	-	0,05	1
6	$(5,2\pm0,4)\ 10^2$	$(3,6\pm0,5)\ 10^3$	(8,7±0,4) 10	10	27
Медногорский					
медно-серный					
<u>комбинат</u>					
7	$(7,2\pm1,1)\ 10^4$	$(6,4\pm0,5)\ 10^2$	$(6,6\pm0,8)\ 10^3$	14	21,6
8	$(2,8\pm0,5)\ 10^3$	$(2,2\pm0,4)\ 10^2$	$(7,9\pm0,5)\ 10^4$	15,6	6,5
<u>Учалинский</u>					
<u>ГОК</u>					
менее 1	-	-	-	0,4	2
5	$(6,0\pm0,7)\ 10^3$	$(4,5\pm0,1)\ 10^2$	(9,8±0,7) 10	11	61
5	$(3,2\pm1,5)\ 10^5$	$(9,7\pm0,2)\ 10^2$	$(7,5\pm1,1)\ 10^2$	16,4	73

Форма, в которой содержатся металлы, может значительно меняться в процессе хранения в отвалах. Пирит и халькопирит почти не растворимы в 1 н. H_2SO_4 , тогда как ионы металлов легко переходят в раствор. В образцах, прошедших флотацию меньше года назад, количество растворимой меди и цинка было невелико. Для отработанных руд, имеющих то же происхождение, доля растворимых металлов увеличивалась по мере их хранения в отвалах, что, судя по наличию железоокисляющих микроорганизмов, может быть результатом вышелачивания.

Таким образом, особенностью отходов из обследованных отвалов флотации ГОКов Южного Урала по сравнению с рудами и концентратами является наличие относительно богатого микробиоценоза, активность и последствия жизнедеятельности которого следует учитывать при разработке способов биовыщелачивания.

Скрининг, фенотипическая характеристика и идентификация микроорганизмов, способных к окислению сульфидов

Источником для выделения культур хемоавтотрофных микроорганизмов послужили образцы длительно хранимых в отвалах отработанных медно-цинковых руд и подотвальные сточные воды, так как они более богаты микроорганизмами.

Все выделенные микробные штаммы были протестированы на способность использовать неорганические вещества, такие как ионы металлов, серу и сульфиды. Среди исследованных штаммов были выявлены как железоокисляющие бактерии, типичные серобактерии, способные расти в кислой области рН, так и небольшое количество хемоорганиотрофов, способных использовать сахара.

В процессе скрининга предпочтение отдавалось микроорганизмам, способным окислять широкий круг неорганических соединений, в первую очередь сульфид-ионы и рудные минералы. В качестве объекта для сравнения был использован типовой штамм *Acidithiobacillus ferrooxidans* DSM 14882.

Микроорганизмы, предназначенные для биовыщелачивания металлов из отработанных руд, должны обладать устойчивостью к действию ионов этих металлов. Штаммы *Acidithiobacillus ferrooxidans* под номерами 1 и 12 были лучше адаптированы к росту в присутствии солей металлов по сравнению с типовым штаммом этого вида и другими выделенными нами штаммами (рис.1). Было также установлено, что протестированные штаммы устойчивы к воздействию ионов Fe^{3+} при их концентрации 500 г/л.

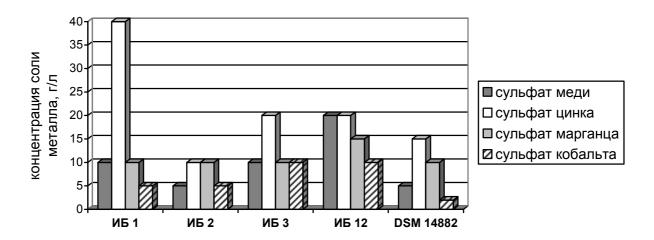


Рис.1. Минимальная концентрация сульфатов металлов, ингибирующая рост штаммов литотрофных бактерий

В результате из всех выделенных микробных штаммов для дальнейших исследований было отобрано два. Штаммы являлись облигатными аэробами, хемолитоавтотрофами, строго ацидофильны (рН=1-4). Способны расти на минеральных средах за счет окисления железного (II), марганцевого (II) иона, элементарной серы, тиосульфата, сульфид иона, минералов пирита, пирротина, халькопирита, халькозина, сфалерита в качестве единственного источника энергии. С использованием ключа, приведенного в определителе Берджи, штаммы были идентифицированы как представители вида *Acidithiobacillus ferrooxidans*, депонированы в Коллекцию микроорганизмов Института биологии УНЦ РАН под № ИБ1 и № ИБ12. и запатентованы в Российской Федерации для биовыщелачивания меди из отходов обогащения сульфидных руд.

Исследование способности микроорганизмов Acidithiobacillus ferrooxidans к выщелачиванию меди из сульфидных руд

Сравнение способности к выщелачиванию меди бактериями Acidithiobacillus ferrooxidans ИБ 1, Acidithiobacillus ferrooxidans ИБ 12 и типовым штаммом Acidithiobacillus ferrooxidans DSM 14882, проведено на лабораторной модели кучного биовыщелачивания.

Было показано, что отходы обогащения сульфидных руд перечисленных выше горно-обогатительных комбинатов являются субстратом, пригодным для биологического выщелачивания меди бактериями Acidithiobacillus ferrooxidans. О микробиологическом характере процесса выщелачивания меди свидетельствовало Acidithiobacillus ferrooxidans увеличение титра В рудных образцах, инокулированных микроорганизмами, на 21 день инкубации по сравнению с моментом постановки опыта (табл.2). А также факт, что в случае удаления микробиоты стерилизацией раствор серной кислоты при комнатной температуре служил весьма слабым выщелачивающим агентом по отношению к отработанной руде.

За счет деятельности внесенных в отработанные руды *Acidithiobacillus* ferrooxidans DSM 14882 из них было извлечено от 19% до 26% меди. Эффективность штаммов, депонированных в коллекции микроорганизмов Института биологии УНЦ РАН, была выше — от 33 до 37% у штамма *Acidithiobacillus* ferrooxidans ИБ1 и от 29 до 41% у штамма *Acidithiobacillus* ferrooxidans ИБ12. Размножение и окислительная активность отмечены у

аборигенных железоокисляющих микроорганизмов в вариантах опыта с не стерильной рудой без инокулята. Однако количество извлеченной с их помощью меди было гораздо ниже, чем в случае с выбранными штаммами.

После биологического выщелачивания руд в растворе присутствовали ионы трехвалентного железа в концентрации 5-12 г/л (рис.2), что согласуется с данными Н.С. Варданяна (1997) относительно скорости окисления пирита активными штаммами сульфобацилл.

Таблица 2 Параметры процесса биовыщелачивания отработанных сульфидных руд

Микроорганизмы	D	Титр	Концентрация	Извлечено меди, %
титкроорт анизмы	Руды	железоокисляющих	меди в	
		бактерий, кл/г	растворе, г/л	
Acidithiobacillus	1	$(6,7\pm0,4)$ 410 ⁶	$0,26\pm0,02$	36
ferrooxidans ИБ 1	2	$(2,3\pm0,3)$ 410 ⁵	$0,18\pm0,02$	30
	2	$(2,1\pm0,1)$ $\text{Y}10^5$	$0,18\pm0,01$	37
	4	$(1,5\pm0,7)$ $\text{Y}10^7$	$0,40\pm0,05$	34
Acidithiobacillus	1	$(5,7\pm0,4)$ 410 ⁷	0,30±0,01	41
ferrooxidans ИБ 12	2	$(6,0\pm0,5)$ 4 10^4	$0,17\pm0,01$	28
	3	$(6,0\pm0,7)$ 410 ⁶	$0,18\pm0,02$	35
	4	$(5,7\pm0,4)$ 4 10^7	$0,35\pm0,04$	30
Acidithiobacillus	1	$(1,1\pm0,3)$ 410 ⁶	0,18±0,02	25
ferrooxidans DSM	2	$(7,0\pm0,3)$ 410 ⁵	$0,14\pm0,01$	24
14882	3	$(8,0\pm0,4)$ Ч 10^3	$0,075\pm0,007$	15
	4	$(8,1\pm0,6)$ $\text{Y}10^5$	$0,22\pm0,03$	19
Аборигенные	1	$(7,1\pm0,2)$ Y 10^4	0,05±0,01	7
микроорганизмы	2	(7,8±0,9)Y10	$0,031\pm0,002$	5
	3	$(8,0\pm0,4)$ Ч 10^2	$0,075\pm0,005$	14
	4	$(2,3\pm0,4)$ $\text{Y}10^5$	$0,20\pm0,04$	17
Стерильный	1	-	0,008±0,002	1
контроль	2	-	$0,012\pm0,001$	2
	3	-	$0,015\pm0,001$	3
	4	-	0,03±0,02	3

Примечание: 1- руда с Сибайского филиала Учалинского ГОКа, 2 – руда с Гайского ГОКа, 3 – руда с Бурибаевского ГОКа, 4 – руда с Медногорского медносерного комбината

Динамика накопления меди и железа в растворах выщелачивания имела свои особенности для отходов, взятых из разных отвалов обогащения. Выщелачивание меди из отходов обогащения Бурибаевского ГОКа проходило с относительно постоянной скоростью (рис.2).

В то же время, активизация выщелачивания меди из отходов флотации Сибайского филиала Учалинского ГОКа наблюдалась только после накопления в среде около 3 г/л железа (III), что, возможно, способствовало установлению необходимой ЭДС между минералами и раствором.

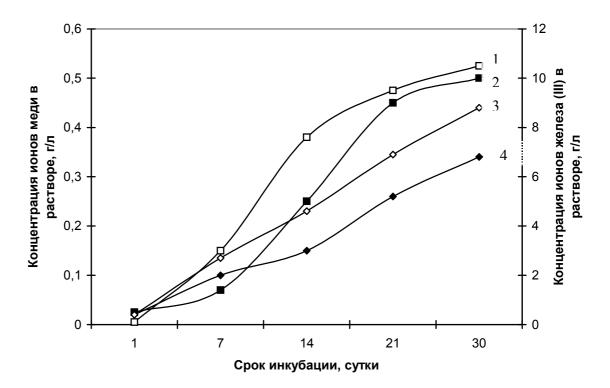


Рис.2. Динамика выщелачивания металлов из отработанных руд штаммом *Acidithiobacillus ferrooxidans* ИБ1

- 1 ионов железа (III) из отходов Сибайского филиала Учалинского ГОКа;
- 2 ионов меди из отходов Сибайского филиала Учалинского ГОКа;
- 3 ионов железа (III) из отходов Бурибаевского ГОКа;
- 4 ионов меди из отходов Бурибаевского ГОКа.

Для двух видов отработанных руд (с Сибайского филиала Учалинского ГОКа и с Гайского ГОКа) отмечено снижение скорости накопления меди и железа в растворе после трех недель инкубации, что, возможно, связано с ингибирующим

действием железа (III), которое именно в растворах выщелачивания этих руд накапливалось в большем количестве 9-11 г/л

Использование в качестве субстрата отходов из отвалов Медногорского медно-серного комбината позволяло получить более концентрированные по меди $(0,6-1,2\ \Gamma/\pi)$ растворы выщелачивания с более низким содержанием железа $(0,5-2,5\ \Gamma/\pi)$.

Получение инокулята Acidithiobacillus ferrooxidans ИБ 1 и Acidithiobacillus ferrooxidans ИБ 12

Бактерии Acidithiobacillus ferrooxidans представляют собой относительно медленно растущие микроорганизмы, что связано с использованием ими неэнергоемкого неорганического субстрата. Поэтому подбор условий способствующих культивирования, накоплению биомассы данных микроорганизмов на этапе их наращивания до внесения в выщелачиваемые руды, позволил бы сократить время и необходимые для этого процесса материальные затраты.

Температура является определяющим фактором для большинства микробиологических процессов. Зоной температурного оптимума для штамма *Acidithiobacillus ferrooxidans* ИБ 1 можно считать диапазон температур 25-30°C, а для штамма *Acidithiobacillus ferrooxidans* ИБ 12 - диапазон температур 20-25°C. Значительное снижение скорости роста *Acidithiobacillus ferrooxidans* отмечено уже при температуре 15°C.

Поскольку для литоавтотрофных микроорганизмов углекислый газ служит питательным ресурсом, определение его оптимального содержания в газовой фазе над питательной средой является составной частью задачи получения инокулята этих микроорганизмов. Максимальный титр штамма A. ferrooxidans ИБ1 был отмечен для вариантов опыта с 5 об.% содержанием углекислого газа, где через 72 часа инкубации был в 100 раз выше, чем в вариантах с атмосферным воздухом, и составил $6,4\cdot10^7$ клеток/мл. Наращивание титра A. ferrooxidans ИБ 12 за аналогичный период времени до $(8,0\pm0,4)\cdot10^7$ клеток/мл углекислый газ стимулировал уже в концентрации 1 об.%.

Было показано, что штамм *Acidithiobacillus ferrooxidans* ИБ 1 быстрее размножается на питательной среде с невысоким 5 г/л содержанием сульфата железа (II) в качестве энергетического субстрата при условии дополнительного внесения в нее небольших количеств отработанной руды (рис.3). Причем

эффективны в качестве добавки были руды разных горно-обогатительных комбинатов.

Очевидно, руды в этом случае могут выступать как стимулирующие добавки (источник микроэлементов или субстрат для стабилизации микробных клеток путем прикрепления). Одновременное включение сульфата железа (II) и планируемых к переработке руд в состав среды для выращивания данного штамма может быть полезным и в случае, если необходимо проводить его адаптацию при переходе к новому субстрату выщелачивания

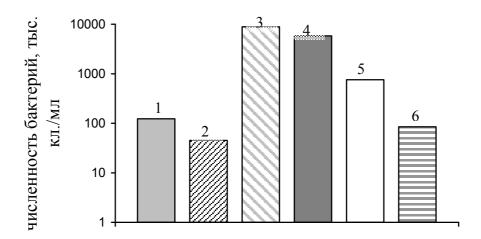


Рис.3. Численность микроорганизмов *Acidithiobacillus ferrooxidans* ИБ 1 через пять дней роста на среде с различными субстратами 1-20~г/л Fe₂SO₄, 2- руда Бурибаевского ГОКа 100~г/л, 3-5~г/л Fe₂SO₄ + 5~г/л руды Бурибаевского ГОКа, 4-10~г/л Fe₂SO₄ + 10~г/л руды Бурибаевского ГОКа, 5-15~г/л Fe₂SO₄ + 15~г/л руды Бурибаевского ГОКа, 6-20~г/л Fe₂SO₄ + 20~г/л руды Бурибаевского ГОКа

Определение оптимальных технологических параметров биологического выщелачивания меди из отходов обогащения руд

Основываясь на данных тестирования нескольких штаммов, как наиболее перспективное можно рекомендовать биологическое выщелачивание отработанных руд Сибайского филиала Учалинского ГОКа и Бурибаевского ГОКа. Поэтому образцы отработанных руд с этих предприятий использовались в дальнейшем для моделирования параметров выщелачивания меди активными штаммами.

Количество выщелачивающего раствора, подаваемого на единицу массы

руды, может иметь значение для протекающих в пульпе выщелачивания микробиологических и химических процессов, так как может влиять на концентрацию в ней химических веществ. Как менее благоприятное для роста микроорганизмов можно отметить для обеих руд соотношение руда/жидкость 2:1 (титр бактерий $6.8 \cdot 10^2 - 5.0 \cdot 10^4$ кл/мл) и в случае с отходами Бурибаевского ГОКа соотношение 1:1 ($3.3 \cdot 10^4$ кл/мл). Существенных отличий между вариантами опыта при соотношении руда/жидкость 1:20, 1:10, 1:5 не наблюдалось, численность микроорганизмов составила ($2.2 - 7.4 \cdot 10^6$ кл/мл.

Максимальная глубина выщелачивания меди из руды отмечена в вариантах опыта с соотношением 1:5 и 1:10 (рис. 4). Т.е. как избыток руды в пульпе, так и излишнее разбавление не благоприятствовали извлечению меди. Быстрое накопление продуктов выщелачивания в пульпе с более высоким содержанием рудных частиц негативно сказывались на биологической составляющей процесса. В этих вариантах опыта накопление железа (III) замедлялось к 14 дню инкубации. В то же время недостаток руды в пульпе 1:20 не обеспечивал необходимой концентрации железа (III) в растворе, которая не поднималась выше 1 г/л.

С другой стороны, использование более густых пульп позволяло получать растворы выщелачивания с концентрацией меди более высокой, чем в разбавленных пульпах $(0,5-1,3\ \ \Gamma/\pi)$ против $0,02-0,03\ \ \ \Gamma/\pi)$, что является преимуществом в технологическом плане. Поэтому в дальнейшем при испытании установки биовыщелачивания было признано удобным использование соотношения 1:2 твердой и жидкой фаз в составе пульпы.

На примере отработанных руд Сибайского филиала Учалинского ГОКа и Бурибаевского ГОКа было определено количество изначально вносимых в установку железобактерий, благоприятное для протекания процесса извлечения меди. Выявлена обратная зависимость между полученным таким образом исходным титром *Acidithiobacillus ferrooxidans* и скоростью накопления бактерий, ионов меди и железа в пульпе с рудой (табл.3).

При исходным титре 10^5 клеток/мл в ряде вариантов опыта их размножения почти не наблюдалось, однако по выделению меди и железа в раствор регистрировалась окислительная активность. Процессу биовыщелачивания меди в большей степени благоприятствовала наименьшая исходная концентрация микроорганизмов 10^2 клеток/мл.

По сравнению с исходным титром 10^5 клеток/мл она позволяла получить с разными рудами в 22 раза и 26 раз более высокую конечную численность бактерий, в 1,3 раза и 2 раза большую скорость накопления в растворе меди.

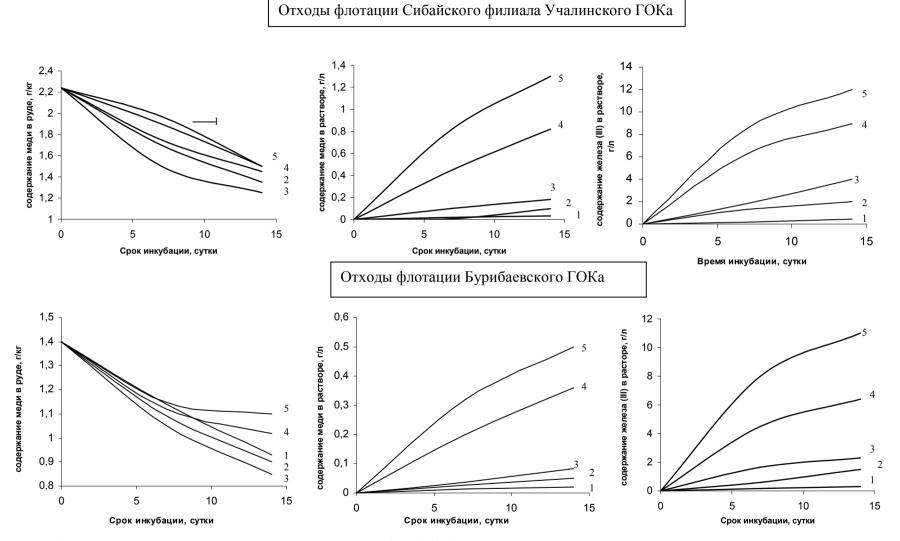


Рис.4. Влияние соотношения жидкой и твердой фаз (Т/Ж) на биовыщелачивание отработанных руд 1-1:20; 2-1:10; 3-1:5; 4-1:1; 5-2:1

Таблица 3 Влияние исходного титра *Acidithiobacillus ferrooxidans* ИБ1 на параметры выщелачивания отходов обогащения сульфидных руд

	Исходный титр микроорганизмов в суспензии, кл./мл					
	10^{2}	10^{3}	104	10 ⁵		
Сибайского филиала Учалинского ГОКа						
Титр бактерий, кл/мл	$(2,2\pm0,1)\ 10^6$	$(1,0\pm0,1)\ 10^6$	$(2,4\pm0,5)\ 10^5$	$(1,0\pm0,1)\ 10^5$		
Остаточное содержание меди в руде, г/кг	1,12±0,03	1,18±0,02	1,36±0,06	1,43±0,04		
Скорость накопления меди в растворе, г/(л сутки)	0,036	0,033	0,031	0,028		
Скорость накопления железа в растворе, г/(л сутки)	0,6	0,5	0,45	0,44		
Бурибаевского ГОКа						
Титр бактерий, кл/мл	$(3,2\pm0,4)\ 10^6$	$(7,5\pm0,2)\ 10^5$	$(8,2\pm0,3)\ 10^4$	$(1,2\pm0,2)\ 10^5$		
Остаточное содержание меди в руде, г/кг	0,54±0,02	0,65±0,03	0,88±0,02	0,86±0,04		
Скорость накопления меди в растворе, г/(л сутки)	0,03	0,026	0,017	0,015		
Скорость накопления железа в растворе, г/(л сутки)	0,36	0,33	0,31	0,30		

Таким образом, достижение оптимальной скорости возможно выщелачивания меди c низким расходом инокулята, что выгодно технологической и экономической точки зрения. Например, при содержании бактерий A. ferrooxidans ИБ 1 в инокуляте 10^6 - 10^7 клеток/мл его расход составляет лишь 1 л на 10 тонн пульпы

Температура пульпы может оказывать влияние процесс на биовыщелачивания как за счет ее воздействия на активность микроорганизмов, так и за счет ускорения химических процессов при более высокой температуре. В условиях лабораторного эксперимента в диапазоне температур от 15єС до 35єС наиболее интенсивное извлечение меди и железа регистрировалось при температуре 25 вС и 30 вС и соответствовало максимуму скорости роста микроорганизмов, свидетельствуя, что интенсивность выщелачивания отработанной руды регулировалась в основном активностью железоокисляющих бактерий.

Изучение процесса биологического выщелачивания отходов флотационного обогащения сульфидных руд в опытно-промышленных условиях

Цикл биологического выщелачивания меди из отработанной сульфидной медно-цинковой руды Сибайского филиала Учалинского ГОКа с учетом подобранных параметров был смоделирован на установке объемом 0,3 м³.

Процесс выделения меди из отработанной руды был осуществлен в три этапа. На первом этапе длительностью 5 дней в ферментере был подготовлен посевной материал бактерий Acidithiobacillus ferrooxidans ИБ 1 с титром 1,2·10⁵ клеток/мл. 1л бактериальной суспензии был помещен в емкость с предварительно загруженной рудой общей массой 100 кг, упакованной в лотки по 10 кг. Недостающий до 200 л объем выщелачивающей суспензии был дополнен за счет питательной среды, не содержащей солей железа. В течение эксперимента сохранялся температурный режим 25€C, благоприятный ДЛЯ протекания бактериального выщелачивания и осуществлялась аэрация 100 мл/(л·мин). Длительность выщелачивания составила 12 дней. На последнем технологическом этапе проводили последовательное осаждения и удаление из отстойника частиц руды и осадка гидроксидов железа. Для осаждения гидроксидов железа кислотность раствора корректировали оксидом кальция до рН 3 –3,5. Полученный осадок прокаливали с целью получения оксида железа Fe₂O₃. Выделение из продуктов выщелачивания ионов меди проводили путем осаждения их на металлической стружке.

За время работы установки был отмечен рост численности железобактерий в выщелачивающей смеси с $2 \cdot 10^2$ клеток/мл до $3,4 \cdot 10^6$ клеток/мл. Усредненная скорость выщелачивания меди из отработанной руды Сибайского филиала Учалинского ГОКа составила 0,117 г/(π ·сутки). Материальный баланс процесса выщелачивания представлен в таблице 4.

Производственный цикл биологического выщелачивания меди из отработанной сульфидной медно-цинковой руды Медногорского медно-серного комбината с учетом подобранных параметров, и опыта, приобретенного при организации данного процесса в объеме 0,3 м³, был смоделирован на технически более оснащенной полупромышленной установке объемом 10 м³ (рис. 5).

За время работы установки был зарегистрирован рост численности железобактерий в выщелачивающей смеси с 10^2 клеток/мл до 10^5 клеток/мл. Усредненная скорость выщелачивания меди из отработанной руды составила 0,14

г/(л·сутки). Материальный баланс процесса выщелачивания представлен в таблице 4.

Растворы, полученные в результате бактериального выщелачивания отходов флотационного обогащения медно-цинковых сульфидных руд, были успешно использованы как сырье для получения металлической меди (выход меди при цементации 98-99%). Несмотря на двукратную разницу в концентрации меди в растворах разного происхождения, на ее цементацию было затрачено одинаковое количество стальных стружек (по 50 г на 1 л) поскольку в менее концентрированном по меди растворе содержалось больше ионов Fe³⁺, также участвующих в окислительно-восстановительной реакции. Очевидно, что использование для дальнейшей переработки растворов выщелачивания с меньшим содержанием железных ионов и большим содержанием ионов меди более экономично.

Таблица 4 Основные результаты биологического выщелачивания отходов обогащения Сибайского филиала Учалинского ГОКа и Медногорского медно-серного комбината

	Содержание элементов, %				
	Медь	Железообщ	Цинк	Сера _{сульфид.}	
Сибайского филиала Учалинского ГОКа					
Исходные отходы обогащения	0,24	25,0	0,16	36,33	
Осадок после выщелачивания	0,10	23,0	0,02	31,70	
Раствор выщелачивания	0,07	0,85	0,07	-	
В растворе от содержавшегося в отходах	67	6,8	87	-	
Осаждено от содержащегося в растворе	99	91	-	-	
Медногорского медно-серного комбината					
Исходные отходы обогащения	1,0	40,02	0,32	46,11	
Осадок после выщелачивания	0,57	39,22	0,19	43,35	
Раствор выщелачивания	0,14	0,26	0,04	-	
В растворе от содержавшегося в отходах	41	1,9	38	-	
Осаждено от содержащегося в растворе	98	95	-	-	

Примечание: "-" – не анализировалось.

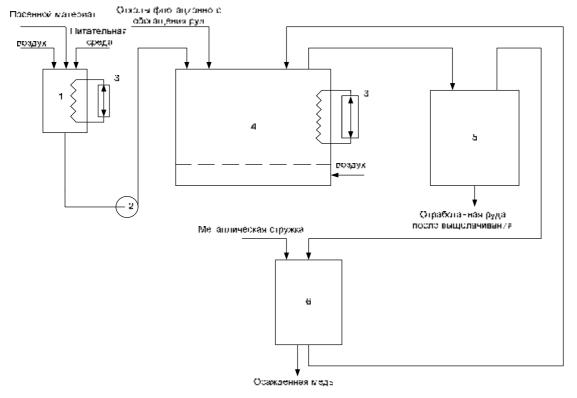


Рис.5. Принципиальная схема установки биологического выщелачивания отходов флотационного обогащения

1 - ферментер; 2 – насос; 3 – термостат; 4 – аппарат для выщелачивания; 3 – отстойник; 4 – емкость для выделения меди на железный скрап.

Таким образом, разработанная биогеотехнология извлечения меди из отходов флотации позволяет осуществлять этот процесс в технологически выгодных условиях: при умеренной температуре, средней и повышенной плотности пульпы, низком исходном титре активных штаммов Acidithiobacillus ferrooxidans. В результате реализации биотехнологии возможно получение таких товарных продуктов как черновая медь и желтый пигмент (порошок Fe_2O_3) Технология может быть использована на предприятиях по обогащению сульфидных руд цветных металлов для увеличения глубины переработки руды без нарушения действующих технологических циклов, а также для вторичной переработки отвалов обогащения с целью получения металлов и их солей.

Выводы:

- 1. Выделены штаммы Acidithiobacillus ferrooxidans ИБ 1 и Acidithiobacillus ferrooxidans ИБ12, превосходящие типовой штамм данного вида по устойчивости к меди, цинку, марганцу, кобальту и способности к выщелачиванию меди из отходов флотации сульфидных медно-цинковых руд Сибайского филиала Учалинского ГОКа, Бурибаевского ГОКа, Гайского ГОКа и Медногорского медно-серного комбината
- 2. Накопление биомассы микроорганизмов Acidithiobacillus ferrooxidans ИБ 1 и Acidithiobacillus ferrooxidans ИБ 12 стимулируется увеличением концентрации углекислого газа в смеси для аэрации до 1-5 об.% и одновременным включением в состав питательной среды сульфата железа(II) и руды в количестве по 5-10 г/л.
- 3. Разработана биогеотехнология извлечения меди из отходов флотации Сибайского филиала Учалинского ГОКа и Бурибаевского ГОКа, основными параметрами которой являются: температура $20\text{--}30\varepsilon\text{C}$, соотношение твердой и жидкой фаз в пульпе 1:2 1:5, исходный титр Acidithiobacillus ferrooxidans 10^2 клеток/мл.
- 4.При реализации разработанной технологии в опытно-промышленном масштабе степень извлечения из отходов Сибайского филиала Учалинского ГОКа и Медногорского медно-серного комбината составила: меди 67% и 41%, цинка 87% и 38%, из продуктивного раствора выделено 98-99% меди в форме порошка и 91-95% железа в форме его оксидов.

Список работ, опубликованных по теме диссертации

- 1. Бакаева М.Д., Столярова Е.А., Мухаматдьярова С.Р., Логинов О.Н., Мустафин А.Г., Щербаков В.В. Активность хемотрофных микроорганизмов в отвалах флотационного обогащения сульфидсодержащих руд // Башкирский химический журнал. 2006. Том 13, №5. С.5-7.
- 2. Столярова Е.А., Мухаматдьярова С.Р., Бакаева М.Д., Логинов О.Н., Мустафин А.Г. Участие микроскопических грибов в превращении неорганических соединений, содержашихся в отходах флотационного обогащения сульфидных руд // Материалы XIX Международной научно-технической конференции «Химические реактивы, реагенты и процессы малотоннажной химии» (2-4.10.2006 г., Уфа). Уфа, изд-во «Реактив».-2006.-Т. 1.-С. 69-70.
- 3. Мухаматдьярова С.Р., Столярова Е.А., Бакаева М.Д., Логинов О.Н., Мустафин А.Г. Выщелачивание меди и цинка из отходов флотационного обогащения сульфидных руд в процессе их хранения // Материалы XIX Международной научно-технической конференции «Химические реактивы, реагенты и процессы малотоннажной химии» (2-4.10.2006 г., Уфа). Уфа, изд-во «Реактив».-2006.-Т. 1.-С. 75-76
- 4. Бакаева М.Д., Столярова Е.А., Логинов О.Н., Четвериков С.П, Мустафин А.Г. Биологическое выщелачивание меди из отходов флотационного обогащения сульфидных руд Южного Урала // Вестник Оренбургского государственного университета. 2007. .№75. C36-38.
- 5. Столярова Е.А., Четвериков С.П. Удаление тяжелых металлов из отходов флотационного обогащения сульфидных руд в процессе их вторичной переработки // Материалы докладов I Всероссийской молодежной научной конференции «Молодежь и наука на севере» Т.3. Сыктывкар, 2008 С. 284-285.
- 6. Логинов О.Н., Бакаева М.Д., Столярова Е.А., Четвериков С.П. Вторичная переработка хвостов обогащения сульфидных руд путем их бактериального выщелачивания // Тезисы докладов Международной научно-технической конференции «Китайско-Российское научно-техническое сотрудничество. Наукаобразование-инновации» (15-23.06.2008 г., г.Харбин). КНР. Харбин-Санья, 2008.-С. 56.
- 7. Бакаева М.Д., Столярова Е.А., Четвериков С.П. Вторичная переработка отходов обогащения сульфидных руд с помощью биотехнологии // Материалы XXI Международной научно-технической конференции «Химические реактивы,

- реагенты и процессы малотоннажной химии» (14-16.10.2008 г., г. Уфа). Уфа, «Реактив».-2008.-Т. 1.-С. 125-126.
- 8. Патент RU № 2340668, С 12 N 1/20 Штамм бактерий *Acidithiobacillus ferrooxidans* ИБ 1 для биовыщелачивания меди из отходов обогащения сульфидных руд/ М.Д. Бакаева, О.Н. Логинов, Н.Н. Силищев, Е.А. Столярова, С.Р. Мухаматдьярова, А.Г. Мустафин Заяв.06.08.2007; опубл 10.12.2008. Бюл. № 34
- 9. Заявка на выдачу патента RU 2007130008/13, C12 N 1/20. Способ культивирования микроорганизмов *Acidithiobacillus ferrooxidans*/ О.Н. Логинов, М.Д. Бакаева, Е.А. Столярова, Н.Н. Силищев. Заяв. 06.08.2007; опубл. 20.02.2009. Бюл. №5.
- 10. Патент RU № 2349641, С 12 N 1/20 Штамм бактерий *Acidithiobacillus ferrooxidans* для биовыщелачивания меди из отходов обогащения сульфидных руд/ М.Д. Бакаева, О.Н.Логинов, Е.А. Столярова, Н.Н. Силищев. Заяв. 06.08.2007; опубл. 20.03.2009. Бюл. №8
- 11. Столярова Е.А., Бакаева М.Д, Логинов О.Н. Способ культивирования *Acidithiobacillus ferrooxidans* для выщелачивания сульфидных руд // Аграрная Россия. 2009. Специальный выпуск. С. 131-132.
- 12. Бакаева М.Д., Столярова Е.А., Логинов О.Н. Извлечение металлов из отвалов Медногорского медно-серного комбината с помощью биотехнологии// Вестник Оренбургского государственного университета. 2009. №10. C.533 535.
- 13. Бакаева М.Д., Логинов О.Н., Столярова Е.А., Четвериков С.П. Биологическая технология извлечения меди из отходов флотационного обогащения сульфидных руд/ Биотехнология. 2009. №5 (в печати).